SmartCook project

Co-funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Database

step-by-step creation of a simple databases

Specification of the problem

In our database, we want to manage information about recipes and its ingredients.

An example would be tea, which contains, for example, hot water, a dried mixture of tea leaves and optionally sugar.

Ingredients

We want to record the **name** of the ingredients. To simplify our task, we will not register anything else with them. To clearly distinguish the ingredients from each other, we choose a unique identifier in the form of a unique number.

• id

- unique value for each record
- a positive integer
- required value

name

- text
- required value

Recipe

We will also simplify the recipe itself. We will only record the name, the date of entering the recipe into the database and again a unique identifier.

• id

- unique value for each record
- a positive integer
- required value

name

- text
- required value

• dttm

- Date and time: YYYY-MM-DD HH:MM:SS
- required value

Table with relationships

recipe

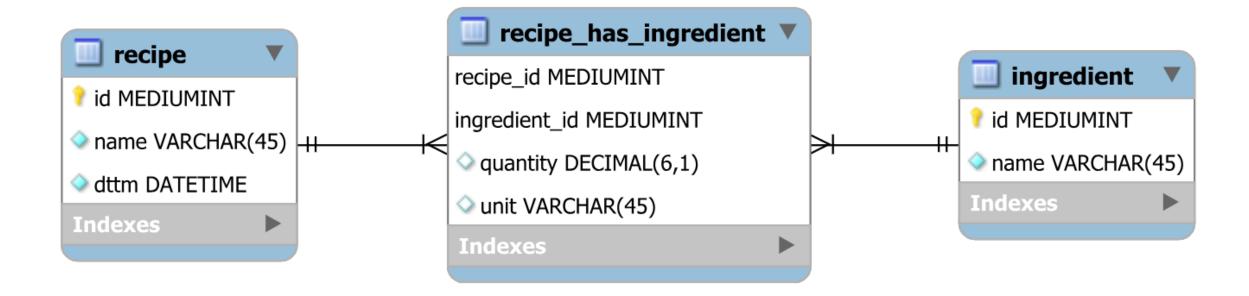
id	name	dttm
1	tea	2023-09-10 14:00:00
2	pancake	2023-09-10 15:20:00
3	chicken schnitzel	2023-10-01 16:00:00
4	cappuccino	2023-10-15 08:00:00

We can visualize the data in tables.

ingredient

id	name
1	water
2	tea leaves
3	salt
4	sugar
5	flour
6	pork
7	egg
8	milk
9	chicken breast

Relationships between records


We record recipes and ingredients, but we do not link them together. It is not yet possible to determine what ingredients the tea is made from.

So, we must think about the **relationship** itself and what we expect from it.

Relationship properties:

- Recipe must have at least one ingredient. There may be more.
- An ingredient can be in more than one recipe. For example, milk can be in a pancake recipe as well as a milkshake.
- From the relationship of the ingredient to the recipe, we should also know the quantity.

E-R diagram (MySQL Workbench)

Table again

recipe

id	name	dttm
1	tea	2023-09-10 14:00:00
2	pancake	2023-09-10 15:20:00
3	chicken schnitzel	2023-10-01 16:00:00
4	cappuccino	2023-10-15 08:00:00

recipe_has_ingredient

recipe_id	ingredient_id	quantity	unit
1	1	250	ml
1	2	3	g
1	4	4	g

ingredient

id	name
1	water
2	tea leaves
3	salt
4	sugar
5	flour
6	pork
7	egg
8	milk
9	chicken breast

File formats

Databases also use special data file formats for data transfer:

- JSON
- XML
- CSV

```
{} tea.json > [ ] ingredients > {} 2 > 100 unit
         "id": 1,
        "name": "Tea",
         "ingredients": [
             "id": 1,
             "name": "water",
             "quantity": 250,
             "unit": "ml"
10
11
             "id": 2,
12
13
             "name": "tea leaves",
14
             "quantity": 3,
             "unit": "g"
15
16
17
             "id": 4,
18
19
             "name": "sugar",
             "quantity": 4,
20
             "unit": "g"
21
22
23
24
```

SQL

```
-- Table `smartcook`.`recipe has ingredient`
CREATE TABLE IF NOT EXISTS `smartcook`.`recipe_has_ingredient` (
  `recipe_id` MEDIUMINT UNSIGNED NOT NULL,
  `ingredient id` MEDIUMINT UNSIGNED NOT NULL,
  `quantity` DECIMAL(6,1) NULL DEFAULT 1,
  `unit` VARCHAR(45) NULL,
 PRIMARY KEY (`recipe_id`, `ingredient_id`),
 INDEX `fk_recipe_has_ingredient_ingredient1_idx` (`ingredient_id` ASC),
 INDEX `fk_recipe_has_ingredient_idx` (`recipe_id` ASC),
 CONSTRAINT `fk_recipe_has_ingredient`
   FOREIGN KEY (`recipe id`)
   REFERENCES `smartcook`.`recipe` (`id`)
   ON DELETE RESTRICT
   ON UPDATE RESTRICT,
 CONSTRAINT `fk_recipe_has_ingredient_ingredient1`
   FOREIGN KEY (`ingredient_id`)
   REFERENCES `smartcook`.`ingredient` (`id`)
   ON DELETE RESTRICT
   ON UPDATE RESTRICT)
ENGINE = InnoDB;
```

SQL

INSERT INTO ingredient VALUES (NULL, 'sugar')

INSERT INTO ingredient(name) VALUES ('salt'), ('milk'), ('water')

UPDATE ingredient SET name='butter' WHERE id=4

DELETE FROM ingredient WHERE id=3